"""
Module that handles the generation of trees.
"""
import numpy as np
from scipy import stats
[docs]
class OneDTreeGenerator():
"""
Computes the (1D) distance before the next tree impact from the trees/rock properties and a probability law. Instanciate then launch :meth:`getOneRandomTreeImpactDistance` to get the next distance.
Note:
The cdf follow an exponential law which parameter is a function of basal area (treesDensity*trees_dhp), trees_dhp and dRock.
Attributes:
sim (:class:`~Common.Simulations.GenericSimulation`, optional): the parent simulation
treesDensity (float): the trees density, in trees/m²
trees_dhp (float, optional): the trees mean diameter, in meters
dRock (float, optional): the rock equivalent diameter, in meters
coef (float): the computed parameters of the cdf exponential law
prob0 (float): the probability to hit a tree immediately
random_generator (): copied from simulation or :class:`numpy.random`
"""
def __init__(self,sim,treesDensity=0.1,trees_dhp=0.3,dRock=0.5):
self.treesDensity = treesDensity
self.basalArea = treesDensity*10000*(trees_dhp*0.5)**2*np.pi #in m2/ha
self.trees_dhp = trees_dhp
self.dRock = dRock
self.sim=sim
self.no_trees = False
self._precomputeData()
def _precomputeData(self):
# scale is the inverse of lambda, see https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.expon.html for scale param
# using simu from june 2024 set based on French NFI data
if self.treesDensity<1e-10 or self.trees_dhp<1e-10:
#there is no trees to account for so next impact is theorically infinite
self.no_trees = True
else:
a, b, c, d = -0.9920, 1.8211, -0.8323, 8.4221
#apply statistical formula
log_scale = a*np.log(self.basalArea)+b*np.log(self.trees_dhp)
log_scale += c*np.log(self.dRock)+d
self.scale = np.exp(log_scale)
self.coef = 1/self.scale
self.prob0=self._PDF_impact(0)
if(self.sim==None):
self.random_generator=np.random
else:
self.random_generator=self.sim.random_generator
def _PDF_impact(self,x):
return self.coef*np.exp(-x*self.coef)
[docs]
def getOneRandomTreeImpactDistance(self):
"""
Get the next impact distance from the instanciated object (pick a value from the previously computed PDF function).
Returns:
float
"""
if (self.no_trees): return np.inf
random=self.prob0*self.random_generator.rand()
return -1/self.coef*np.log(random/self.coef)