Source code for Common.TreesGenerators

"""
Module that handles the generation of trees.
"""

import numpy as np
from scipy import stats


[docs] class OneDTreeGenerator(): """ Computes the (1D) distance before the next tree impact from the trees/rock properties and a probability law. Instanciate then launch :meth:`getOneRandomTreeImpactDistance` to get the next distance. Note: The cdf follow an exponential law which parameter is a function of basal area (treesDensity*trees_dhp), trees_dhp and dRock. Attributes: sim (:class:`~Common.Simulations.GenericSimulation`, optional): the parent simulation treesDensity (float): the trees density, in trees/m² trees_dhp (float, optional): the trees mean diameter, in meters dRock (float, optional): the rock equivalent diameter, in meters coef (float): the computed parameters of the cdf exponential law prob0 (float): the probability to hit a tree immediately random_generator (): copied from simulation or :class:`numpy.random` """ def __init__(self,sim,treesDensity=0.1,trees_dhp=0.3,dRock=0.5): self.treesDensity = treesDensity self.basalArea = treesDensity*10000*(trees_dhp*0.5)**2*np.pi #in m2/ha self.trees_dhp = trees_dhp self.dRock = dRock self.sim=sim self.no_trees = False self._precomputeData() def _precomputeData(self): # scale is the inverse of lambda, see https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.expon.html for scale param # using simu from june 2024 set based on French NFI data if self.treesDensity<1e-10 or self.trees_dhp<1e-10: #there is no trees to account for so next impact is theorically infinite self.no_trees = True else: a, b, c, d = -0.9920, 1.8211, -0.8323, 8.4221 #apply statistical formula log_scale = a*np.log(self.basalArea)+b*np.log(self.trees_dhp) log_scale += c*np.log(self.dRock)+d self.scale = np.exp(log_scale) self.coef = 1/self.scale self.prob0=self._PDF_impact(0) if(self.sim==None): self.random_generator=np.random else: self.random_generator=self.sim.random_generator def _PDF_impact(self,x): return self.coef*np.exp(-x*self.coef)
[docs] def getOneRandomTreeImpactDistance(self): """ Get the next impact distance from the instanciated object (pick a value from the previously computed PDF function). Returns: float """ if (self.no_trees): return np.inf random=self.prob0*self.random_generator.rand() return -1/self.coef*np.log(random/self.coef)