"""
This module is used by the TwoD model. It describes 2D geometric objects and provide some functions to solve geometric problems.
"""
import numpy as np
import platrock.Common.Debug as Debug
import platrock.Common.Math as Math
[docs]
class Parabola(object):
"""
A 2D parabola, described by : :math:`z = Ax^2 + Bx +C`. The instanciation can be done with either from:
* :math:`g` and the velocity and position of a :class:`TwoD.Objects.Rock`,
* :math:`g` and an explicit pair of position and velocity,
* directly from an ABC vector/list.
Args:
r (:class:`TwoD.Objects.Rock`, optional): a rock from which to deduce the parabola
pos (iterable, optional): a position in a list, a vector or an array :math:`[px, pz]`
vel (iterable, optional): a velocity in a list, a vector or an array :math:`[vx, pz]`
g (float, optional): the gravity acceleration
ABC (iterable, optional): the A, B and C constants in a list, a vector or an array :math:`[A, B, C]`
Attributes:
A (float): the :math:`A` square parameter
B (float): the :math:`B` linear parameter
C (float): the :math:`C` constant parameter
"""
def __init__(self,r=None,pos=None,vel=None,g=None,ABC=None): #r is a rock
if(not r==None):
x=r.pos[0] ; y=r.pos[1]
vx=r.vel[0] ; vy=r.vel[1]
elif(isinstance(pos,Math.Vector2) and isinstance(vel,Math.Vector2)):
x=pos[0] ; y=pos[1]
vx=vel[0] ; vy=vel[1]
elif(ABC is not None):
self.A=ABC[0]
self.B=ABC[1]
self.C=ABC[2]
return
self.A=-g/(2.*vx**2)
self.B=vy/vx+g*x/vx**2
self.C=y-g*x**2/(2.*vx**2)-vy*x/vx
[docs]
def get_value_at(self,x):
"""
Returns the :math:`z` value of the parabola at the given :math:`x` position.
Args:
x (float): the :math:`x` value
Returns:
float: :math:`Ax^2 + Bx +C`
"""
return self.A*x*x + self.B*x + self.C
[docs]
def get_arrow_x_from_gradient(self,gradient):
"""
Returns the :math:`x` value of the arrow for this parabola and a slope defined by its gradient. If the parabola is a trajectory, the arrow is the highest (vertical) height of the object during its fly over the slope.
Args:
gradient (float): the slope gradient (:math:`dx/dy`)
Returns:
float: :math:`x_{arrow}`
"""
return (gradient-self.B)/(2*self.A)
[docs]
class Line(object):
"""
A line, described by the two constants :attr:`a` and :attr:`b` in :math:`z=ax + b`. The instanciation can be done with either from:
* a segment S
* a and b constants
* [x, y] of a point and a positive angle in radians
Args:
S (:class:`TwoD.Objects.Segment`, optional): a segment from which to deduce the line.
Attributes:
a (float): the rate of increase coefficient.
b (float): the y-intercept.
"""
EPS = 1e-10
def __init__(self,S=None,a=None,b=None,point=None,angle=None):
self._vertical = False
self._vertical_x = None
self._horizontal = False
if(not S==None):
if(abs(S.points[0,0]-S.points[1,0])<self.EPS):
self._vertical = True
self._vertical_x = S.points[0,0]
self.a = None
self.b = None
else:
self.a=S.slope_gradient
self.b=S.points[0,1]-(self.a*S.points[0,0])
elif((not a==None) and (not b==None)):
self.a=a
self.b=b
elif((isinstance(point, np.ndarray)) and (not angle==None) and (len(point)==2)):
angle = angle%np.pi
if(abs(angle-np.pi/2)<self.EPS or abs(angle-3*np.pi/2)<self.EPS):
self._vertical = True
self._vertical_x = point[0]
self.a = None
self.b = None
else: #general case :
self.a = np.tan(angle)
self.b = point[1]-(self.a*point[0])
if (self.a==0):
self._horizontal = True
[docs]
def get_roots(A,B,C):
"""
Gives the roots of the second order equation :math:`z=Ax^2 + Bx + C`. If there is no solutions, the returned array is empty. If the there is one solution only, it will be duplicated in the output array.
Args:
A (float): the square coefficient
B (float): the linear coefficient
C (float): the constant coefficient
Returns:
:class:`~platrock.Common.Math.Vector2`: array containing the two roots :math:`[x_{root1}, x_{root2}]`, or empty array.
"""
D=B*B-4.*A*C
if(D<0.):
return np.array([])
else:
D=np.sqrt(D)
return Math.Vector2([(-B+D)/(2.*A),(-B-D)/(2.*A)])
[docs]
def get_line_parabola_intersections(L,P):
"""
Computes the intersections between a line and a parabola. If no solutions, return a NaN-filled array.
Args:
L (:class:`TwoD.Geoms.Line`): the line
P (:class:`TwoD.Geoms.Parabola`): the parabola
Returns:
:class:`numpy.ndarray`: the two solutions :code:`[[x_i1,z_i1], [x_i2, z_i2]]`:
"""
if(L._vertical):
return np.array([[L._vertical_x,P.get_value_at(L._vertical_x)],[np.nan,np.nan]])
else:
roots = get_roots(P.A,P.B-L.a,P.C-L.b) #The roots are the x-coords of the intersection(s). They are the solutions of the 2nd order polynom coming from : parabola_equation = line_equation.
if(len(roots)>0): #If the solution(s) exists
return np.array([ [roots[0],L.a*roots[0]+L.b], [roots[1],L.a*roots[1]+L.b] ])
return np.array([[np.nan,np.nan],[np.nan,np.nan]]) #No solutions
[docs]
def get_segment_parabola_intersections(S,P):
"""
Computes the intersection(s) between a segment and a parabola. If no solutions, return an empty array.
Args:
S (:class:`TwoD.Objects.Segment`): the segment
P (:class:`TwoD.Geoms.Parabola`): the parabola
Returns:
:class:`numpy.ndarray`: the eventual solutions :code:`[[x_i1, z_i1], [x_i2, z_i2]]`.
"""
potential_intersections=get_line_parabola_intersections(Line(S),P)
valid_ids=[]
for i in [0,1]:
if(potential_intersections[i,0]>S.points[0,0] and potential_intersections[i,0]<S.points[1,0]):
valid_ids.append(i)
return potential_intersections[valid_ids]
[docs]
def find_next_bounce(sim,rock,rock_parabola):
"""
In a given simulation, for a given rock, find the next rebound on the soil. The algorithm works as follows:
#. compute the rock parabola
#. loop on the segments from the :attr:`TwoD.Objects.Rock.current_segment` in the :attr:`TwoD.Objects.Rock.flying_direction`, and try to find a parabola-segment intersection
#. keep the intersection with the soil if it is compatible with the rock flying direction and if it does not correspond to the previous rock rebound point
Args:
sim (:class:`TwoD.Simulations.Simulation`): the simulation
rock (:class:`TwoD.Objects.Rock`): the rock
Returns:
(:class:`~platrock.Common.Math.Vector2` :code:`[x_i, z_i]`, :class:`TwoD.Objects.Segment`) : (intersection point, corresponding segment)
"""
Debug.info("Find next bounce")
trying_segt=rock.current_segment
#LOOP ON SEGMENTS#
while(True):
#for l in range(0,10):
Debug.info("Trying to find rebound on segment n",trying_segt.index)
intersections=get_segment_parabola_intersections(trying_segt,rock_parabola)
Debug.info("Potential intersections:",intersections)
#LOOP ON POTENTIAL INTERSECTIONS#
for i in intersections:
delta_x=i[0]-rock.pos[0]
if(np.sign(delta_x)==rock.flying_direction and abs(delta_x)>1e-7):
Debug.info("Keep intersection:",i,"with delta_x:",delta_x)
return Math.Vector2(i),trying_segt #WE FOUND, SO STOP HERE
else:
Debug.info("Invalid intersection:",i,"with delta_x:",delta_x)
continue #GO TO THE NEXT INTERSECTION, IF ANY
#NO VALID INTERSECTION, GO TO NEXT SEGMENT
ID=trying_segt.index+rock.flying_direction
if(ID<0 or ID>len(sim.terrain.segments)-1):
raise("find_next_bounce(): no intersection could be found for this rock on the whole terrain.")
trying_segt=sim.terrain.segments[ID]
Debug.info("No valid intersection found")